Deborah L. Toppmeyer believes that it is her “sixth sense”—what she calls clinical acuity—that established her among the ranks of America’s top docs. It has also helped build her stellar reputation as an expert in breast cancer, breast cancer genetics and the design and implementation of clinical trials that offer promising new therapies targeted to specific types of breast cancer.

Yes, she has a very impressive resume. She joined The Cancer Institute of New Jersey (CINJ) in 1995 from the Dana Farber Cancer Institute at Harvard Medical School. Now she is chief medical officer and chief of solid tumor oncology at CINJ, director of the Goldstein Breast Cancer Center and the LIFE Center for Breast Cancer Awareness, and associate professor of medicine at Robert Wood Johnson Medical School. She has won awards and published scores of articles.

But to Toppmeyer, a great doctor is defined by EQ—emotional intelligence—as well as IQ. “A good doctor must of course be competent in medical management,” she maintains. “A great doctor has an equally impressive emotional intelligence, listening to and understanding the patient with compassion and empathy.”

As Toppmeyer describes her clinical acuity, the end result is getting to know her patients and relating to each one, something she does well. Nothing could be a better measure of her own EQ. She understands not only the importance of a special relationship to the patient but also the opportunity to be part of the patient’s family. “They all look to you for guidance,” she adds. “You’re helping a patient transition to a very difficult stage of life. You’re giving difficult news. You must be honest and transparent. Patients need to know where they stand.” And Toppmeyer believes she needs to know where the patient is coming from.

Looking back, Toppmeyer remembers where she came from: Her commitment to a career in medicine came at a very early age. She was talented where it counted—in math and science—but just as interested in “giving back,” a combination that shaped her professional future.

“It is her ‘sixth sense’—what she calls clinical acuity—that established her among the ranks of America’s top docs.”

U.S. News & World Report identified more than 25 physicians from UMDNJ as being in the top 1 percent in the nation in their respective specialties. We’re not surprised but we are very proud. We asked seven of these doctors why they think they were selected; and although they all deny being different from many other excellent physicians in their fields, the writers of this story recognized a pattern that might be called the anatomy of exceptional doctoring. Two of its primary components are passion for the work and a high degree of compassion for the patient. Read on to learn more.
Passion Drives His Work

Lawnce Gobe never intended to be a neurologist. In 1962, he was headed straight from his neurology residency into clinical practice. That’s when he met Roger Duvoisin, MD, then-chair of neurology at Robert Wood Johnson Medical School (RWJMS), who in the late 1960s had been a member of the team that discovered levodopa, still the most effective and widely used drug for Parkinson’s disease. “I was so impressed with his brilliant scientific mind,” says Gobe. “He became my role model.”

The young physician joined the RWJMS neurology department in 1983. And they say she is history. In this clinical case, the medical school team helped rewrite the history of Parkinson’s disease; and Golbe stepped up to play a leading role. Building on Duvoisin’s suspicion that genetics might play an important part in the cause of Parkinson’s, Golbe pushed forward. He led the clinical part of a decade-long effort to find the first Parkinson’s disease variant. That effort paid off in 1996.

Golbe himself logged thousands of miles from 1986 to 1997, circling the Atlantic between the U.S. and Italy and traveling to many parts of this country, chasing down DNA samples in the hunt for the suspected disease gene. “There are great people at CINJ and it’s like working with great people,” she says. “I was here early on and it’s been like shaping your child’s future.”

Speaking of which, Toppmeyer and her cardiologist husband are the parents of two teenage boys. The household also includes, according to her, “two house cats.” And although she admits to little patience with bureaucracy, she appreciates the trickle down to better patient care. “That’s an amazing institution,” she reports. “Everything we do here is for the patients.”

Toppmeyer enjoys the academic research environment at CINJ, its diversity and the opportunities to develop new skill sets. She is excited about the progress research is making in better understanding disease and in the impact that precision medicine and its targeted therapy is making on patient care. “You know it when you feel it. It’s the interactions between doctor and patient,” she says. “Just as important is communica- tion between the clinician and the patient, and that includes the physician/scientist.” She knows that discovering in the clinic spot researchers to develop better understanding of disease. “There are great people at CINJ and it’s like working with family,” she says. “I was here early on and it’s been like shaping your child’s future.”

Two geneticists working with Golbe at RWJMS, William G. Johnson, MD, and Alice M. Lazzarini, PhD, started to use the DNA samples to hunt for the culprit gene. “I was doing work with the tools available in a small lab at that time, but the team was able to sort through markers on about half the genome before forming the collabora- tion with scientists at the NIH. Using their rooms full of state-of-the-art technology, they then used only a small number of the general region of the gene on chromosome 4, a part of the genome not yet examined by Johnson and Lazzarini. This was published in 1998 in the journal Science.”

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.

Within days of publication of this research, several labs tested the previously suspected “blots” of protein found in brain cells of those with non-hereditary Parkinson’s — called Lewy bodies — and found alpha-synuclein to be their primary component. This demon- strated that even in Parkinson’s sufferers who seem to have no genetic mutation for the disease, malfunction of alpha-synuclein is a fundamental step in the disease process, causing brain cells to die over a period of years. The Lewy bodies are especially prominent in dopamine-producing brain cells, and loss of dopamine is a promi- nent feature in this disease. Their findings were impact- ful. “Current drugs, companies are working to stop the alpha-synuclein from forming abnormal clumps,” Golbe says. “One change in the genetic code, in the gene for “alpha-synuclein,” a protein not previously suspected of a connection with Parkinson’s. That was published, also in Science, in June 1997.